City of Flagstaff Low Impact Development (LID) Bio-Remediation Soil Design

Proposal Presentation

Thursday, April 26th 2018.

Engineering Team:

Meshal Alomar, Abdulrahman Alsubiei, Daniel'le DeVoss, Rebeca Robles

Project Background and Purpose

Low Impact Development (LID)

- Stormwater management systems that integrate natural components to collect and remediate runoff.
- Soil Matrix
 - Infiltrates and treats stormwater runoff through different soil layers.
- Capstone Project
 - Continuation project
 - Designing a soil matrix ONLY with local materials that infiltrates first 1" of stormwater in 1 hour.

Figure 1. LID Cross-section View Example [1]

Task 1: Soil Identification

Figure 2. Soil Image [2]

- Task 1.1: Local Soil Identification
 - Local soil research
 - Contacting local material providers
- Task 1.2: Obtaining Local Soils
 - Purchasing materials
 - Obtaining them from NAU Facility Services

Task 2: Soil Testing

- Performing tests for each soil layer
- Task 2.1: Hydraulic Conductivity
 - Flow rate through the void space
 - ASTM D5084-16a
- Task 2.2: Specific Gravity
 - Density to density of water
 - ASTM D854
- Task 2.3: Saturated Soil Dry Test
 - Volume and mass of soil
 - ASTM D2980-17

Figure 3. Hydraulic Conductivity Test [2]

Task 3: Soil Matrix Design

Task 3.1: 2017 Capstone Design Re-testing

Testing best two final soil media designs

Task 3.2: Topsoil Testing

• Testing 3 columns with one type topsoil and 3 with another type

Figure 4. Soil Matrix Infiltration Testing Method [3]

Task 4: Vegetative Coverage Testing

- Task 4.1: Identify Native Species
 - Research on cost, availability, and cultivation times
- Task 4.2: Cultivate Vegetative Coverage
 - Growing grass on separate top soil layer
- Task 4.3: Assess Impact of Vegetative Layer
 - 3 Columns with vegetation AND 3 columns without

Figure 5. LID Vegetation Example [4]

Task 5: Soil Matrix Design Selection

Figure 6. Soil Matrix Column Example [3]

Soil media design selection based ONLY on infiltration rates according to soil layer ratios.

Task 6: Stormwater Runoff Sampling

Task 6.1: Alternative 1

- If precipitation occurs
- 6 Samples total from storm drains near the wash
- Task 6.2: Alternative 2
 - Artificially contaminated samples

Figure 7. Proposed Sampling Site

Task 7: Stormwater Runoff Testing

- Task 7.1: Fecal Coliform
 - HACH 8074
- Task 7.2: Nutrients
 - HACH 10071 and HACH 10127
- Task 7.3: Petroleum Hydrocarbons
 - ASTM D6855-12
- Task 7.4: Turbidity
 - ASTM D6855-12
- Task 7.5: Metals
 - ASTM D1971-16

Figure 8: Example of agar plate with fecal coliform bacteria colonies [5]

Task 8: Design Economics

Cost analysis based on material ratio and costs

Figure 9. Soil Matrix Column Ratios Example [3]

Task 9: Final Matrix Design

Based on infiltration rate, ability to remediate stormwater runoff, and cost.

Task 10: Project Impacts

- Task 10.1: Environmental Impacts
 - Reduction of sediments, nutrients, and petroleum hydrocarbons
- Task 10.2: Economic Impacts
 - Reduction of groundwater treatment cost
 - Prevention of property damages
- Task 10.3: Social Impacts
 - Community aesthetics enhancement

Figure 10. An example of an LID project [6]

Task 11: Project Management

Task 11.1: Meetings

- Client, team, technical advisor, grading instructor
- Task 11.2: Meeting Minutes and Agendas

Task 12: Project Deliverables

- Task 12.1: 30% Report
- Task 12.2: 60% Report
- Task 12.3: Final Report
- Task 12.4: Final Project Presentation
- Task 12.5: Reflection Document
- Task 12.6: Website

Project Schedule

Figure 13. Capstone Project Schedule

Project Staffing

Staffing Hours							
Task	Senior Engineer (hr)	Lab Manager/P.E (hr)	Lab Tech (hr)	Field Tech (hr)			
1. Soil Identification	2	2	0	0			
2. Soil Testing	3	3	20	0			
3. Soil Matrix Design	5	10	10	0			
4. Vegetative Coverage Testing	3	10	30	0			
5. Soil Matrix Design Selection	2	5	48	0			
6. Stormwater Run-off Sampling	2	10	0	40			
7. Stormwater Testing	5	7	5	0			
8. Design Economics	3	10	0	0			
9. Selection of Final Soil Matrix Design	5	10	5	0			
10. Project Impacts	3	6	0	0			
11. Project Management	98	98	98	98			
12. Project Deliverables	36	36	36	36			
SUBTOTAL HOURS	167	207	252	174			
			TOTAL HOURS	800			

Table 1. Project Total Staff Hours

Project Costs

ltem	Senior Engineer	Lab Manager/P.E.	Lab Tech	FieldTech
Pay (\$/hr)	\$92	\$38	\$18	\$18
Multiplier	1.9	2.5	3.7	3.7
Cost (\$/hr)	\$175	\$95	\$65	\$65
TOTAL HOURS	167	207	252	174
SUBTOTAL STAFF COST	\$29,192	\$19,665	\$16,317	\$11,267
			TOTAL STAFF COST	\$76 <mark>,</mark> 440

Table 2. Staff Cost

ltem	Unit	Unit Cost	UnitTotal	Cost
2. Soil Testing	Days	\$100	2	\$200
3. Soil Matrix Design	Days	\$100	1	\$100
4.Vegetative Coverage Testing	Days	\$100	1	\$100
5. Soil Matrix Design Selection	Days	\$100	2	\$200
6. Stormwater Sampling Alternative 2	Days	\$100	1	\$100
7. Stormater Testing	Days	\$100	2	\$200
		TOTAL LAB COST		\$900

Table 3. Lab Cost

Project Costs

ltem	Cost	
Staffing Cost	\$76,440.00	
Lab Cost	\$900.00	
Materials Cost	\$900.00	
TOTAL ENGINEERING DESIGN COST	\$78,240.00	

References

- [1] Compass.astm, "Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter,". [Online]. Available: <u>https://compass.astm.org/download/D5084.22702.pdf</u>
- [2] Compass.astm.org. (2018). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. [online] Available at: https://compass.astm.org/download/D854.26525.pdf
- [3] Zhinghan Z., Pott, R., Di Fiore, F., Alhamidi, T. Low Impact Development Bio-Remediation Soil Design. Northern Arizona University. December 14, 2017.
- [4] EPA: Landscaping with Native Plants. Green Landscaping. [Online]. Available: <u>https://archive.epa.gov/greenacres/web/html/index-2.html</u>
- [5]"Opinions on Coliform bacteria," Opinions. [Online]. Available: http://www.writeopinions.com/coliform. [Accessed: 20-Apr-2018].
- [6] Stromwater Managemet Action Plan. [Online]. Available: http://rainscapedesigns.com/stormwater-action-plan/?
- [7] Project Management. [Online]. Available: https://www.soluster.com/project-management/